# Pressureless Sintering of TiB<sub>2</sub>-B<sub>4</sub>C Ceramic Matrix Composite

H.R. Baharvandi and A.M. Hadian

(Submitted February 4, 2007; in revised form November 10, 2007)

The effect of TiB<sub>2</sub> addition on sinterability and mechanical properties of B<sub>4</sub>C material was investigated. It was found that addition of TiB<sub>2</sub> aids the sintering process and permits pressureless sintering at temperatures between 2050 and 2150 °C. This also alleviates grain growth during sintering. The relative density reaches 98.5% of the theoretical density by increasing the percentage of TiB<sub>2</sub> in the composition. The mechanical properties such as hardness, fracture toughness, and bending strength were improved remarkably by addition of TiB<sub>2</sub>.

Keywords boron carbide, ceramic, composite

## 1. Introduction

Boron carbide is characterized by a very high hardness (Vickers hardness 40-60 GPa) and a very low density (2.52 g/cm<sup>3</sup>), desirable for many industrial applications (Ref 1-22). However, the use of monolitic boron carbide is limited by its low strength, low toughness, poor sinterability and machinability. Since B<sub>4</sub>C is very difficult to sinter with higher approximately 80% of the theoretical density, a variety of second phases have been added as sintering aids (Ref 1-20). Nonoxide ceramics such as SiC (Ref 1-3), TiC (Ref 4) and C (Ref 5-7) have also been found to be very affective as sintering additives for B<sub>4</sub>C. Metallic sintering aides such as Al (Ref 8), Si (Ref 18), Ti (Ref 19), Mg and Fe are frequently added to provide a medium for liquid phase sintering. Metallic phases at the grain boundaries generally deteriorate the unique properties of hard ceramics. However, in these cases, either a large amount of a second phase or very high sintering temperatures are required for full densifications (Ref 1-18). Oxides are scarcely used as sintering aids for B<sub>4</sub>C, mainly because of the chemical instability of B<sub>4</sub>C with respect to many oxides (Ref 21, 22). In other words, B<sub>4</sub>C reacts with other oxides during sintering to form new compounds that might determine the unique properties of B<sub>4</sub>C. However, recently, Kim observed that the addition of small amounts of Al<sub>2</sub>O<sub>3</sub> increases the sinterability of B<sub>4</sub>C remarkably (Ref 1, 22).

Research has been done to study the effect of additional TiB<sub>2</sub> on the properties of B<sub>4</sub>C. Shorokhod studied the formation of TiB<sub>2</sub>-B<sub>4</sub>C composite via in situ reaction of B<sub>4</sub>C-C-TiO<sub>2</sub> (Ref 23). Other researchers have measured mechanical properties of the same composite material prepared by hot-pressing or spark

**H.R. Baharvandi**, Department of Metallurgy and Materials, Faculty of Engineering, University of Tehran, Tehran, Iran; and **A.M. Hadian**, University of Malek Ashtar, Tehran, Iran. Contact e-mail: baharvandee@yahoo.com.

plasma sintering methods (Ref 24-30). All the previous researches emphasize the effectiveness of  $TiB_2$  on mechanical properties of  $B_4C$  material.

All these techniques either require expensive processing equipments or as for the in situ method need complicated processing route (Ref 23-30). In the present study, the effect of TiB<sub>2</sub> addition on the pressureless sintering and densification behavior of B<sub>4</sub>C has been investigated. Mechanical properties, such as hardness and fracture toughness of B<sub>4</sub>C, have been measured and correlated with the variation in density and composition of the body.

# 2. Experimental Procedure

High-purity  $B_4C$  (B:C ratio of 3.8-3.9) and high-purity  $TiB_2$  powders were used as starting materials. The average size and the specific surface area of  $B_4C$  powder were measured to be 1.33  $\mu$ m and 6.64 m²/g, respectively. Up to 30 wt.% of  $TiB_2$  was added as the sintering aid. The powders were ball-milled in isopropyl alcohol for 8 h using high-purity  $Al_2O_3$  balls. The mixture was then dried in a rotary vacuum evaporator, and passed through a 60-mesh screen. The powder mixtures were cold-pressed under 80 MPa into samples having  $30\times3\times60$  mm³ dimensions. The green samples were then sintered using a microprocessor controlled graphite element vacuum furnace. The heating and cooling rates were 10 °C/min and furnace cooling, respectively.

For microstructural examinations, dense sintered bodies were surface ground and polished with diamond paste down to 1  $\mu m$  surface finish. The polished surfaces were then electrically etched in a 0.1% KOH solution with a current density of 0.1  $A/cm^2$  for 10-20 s. Microstructures of the specimens were observed using a scanning electron microscope and the phases were characterized by X-ray diffraction (XRD) method. The density was measured by Archimedes method. An approximate theoretical density was calculated for the various compositions of  $B_4C\text{-TiB}_2$  system (Ref 12).

For mechanical testing, samples were cut to dimensions of  $3 \times 4 \times 45$  mm<sup>3</sup> and ground with an 800-grit diamond-grinding wheel. The tensile side of the specimens was polished with

diamond paste down to 1  $\mu m$  finish. The edges of the tensile side of the specimens were rounded with a radius of  $0.15\pm0.05$  mm. To measure the hardness, a Vickers indenter was used with a load of 1.96 N. The flexural strength was measured by four-point flexural test method using a universal testing machine with a crosshead speed of 0.5 mm/min. The inner and outer spans of the jig were 20 and 40 mm, respectively. The fracture toughness of the specimens was determined by the indentation strength method. After indenting the polished surface at 98 N with a Vickers indenter for 15 s, the fracture strength was measured with the four-point flexural configuration (Ref 13). For each set of mechanical tests at least five samples were tested.

### 3. Results and Discussion

Figures 1 and 2 show SEM images indicating the influence of TiB<sub>2</sub> on densification of boron carbide. From the figures, it can be seen that by increasing the sintering temperature from

2050 to 2150 °C, the amount of porosity has decreased remarkably with an increase in grain size. The white phase is  $\text{TiB}_2$  and the dark phase is  $\text{B}_4\text{C}$ . The figures also indicate that addition of  $\text{TiB}_2$  has resulted in reduction of porosity in both samples. Compared to Fig. 2(a), less porosity is observed in the samples sintered at 2150 °C [Fig. 2(b)]. It is also apparent that the grain size in these samples is smaller than that of the additive-free samples. In order to quantify the size of the grains, the polished surfaces of some  $\text{B}_4\text{C}$  and  $\text{B}_4\text{C}$ -TiB<sub>2</sub> samples were thermally etched and the grain sizes were measured (Table 1).

This indicates that TiB<sub>2</sub> has acted as a grain growth inhibitor in this case. The same effect has been reported for graphite and carbon black by other researchers (Ref 5-7). The better sinterability will result in increasing density. Figure 3 shows the variation of relative density as a function of TiB<sub>2</sub> addition. The figure indicates that by increasing the amount of TiB<sub>2</sub> the relative density increases. It is also apparent that this value is higher for the samples sintered at 2150 °C. A density value of 98.5% of the theoretical density was obtained for the samples having 30% TiB<sub>2</sub> and sintered at 2150 °C, whereas the density of the samples sintered at 2050 °C was about 96.5 of TD.

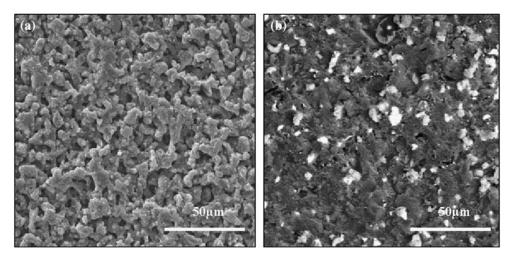



Fig. 1 SEM micrographs of samples sintered at 2050 °C for 1 h. (a) B<sub>4</sub>C-free TiB<sub>2</sub> and (b) B<sub>4</sub>C-30% TiB<sub>2</sub>

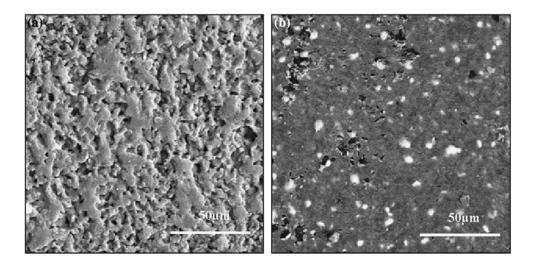



Fig. 2 SEM micrographs of samples sintered at 2150 °C for 1 h. (a) B<sub>4</sub>C-free TiB<sub>2</sub> and (b) B<sub>4</sub>C-30% TiB<sub>2</sub>

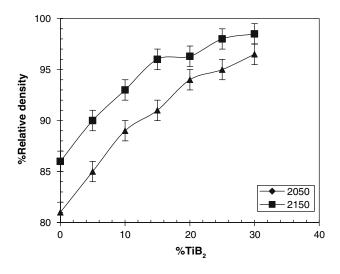
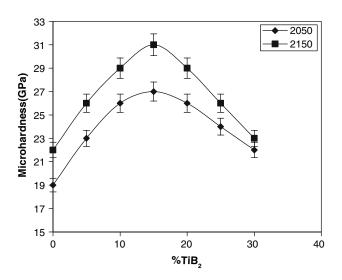




Fig. 3 Effect of TiB<sub>2</sub> addition on relative density of the samples sintered at 2150 °C ( $\blacksquare$ ) and 2050 °C ( $\triangle$ )



**Fig. 4** Effect of TiB<sub>2</sub> addition on Vickers Microhardness of the samples sintered at 2150  $^{\circ}$ C (■) and 2050  $^{\circ}$ C (▲)

Table 1 The grain size of samples

| Materials composition, wt.%TiB <sub>2</sub> | Grain size, μm |
|---------------------------------------------|----------------|
| 2050 (°C)                                   |                |
| 0                                           | 20             |
| 10                                          | 15             |
| 20                                          | 12             |
| 30                                          | 9              |
| 2150 (°C)                                   |                |
| 0                                           | 30             |
| 10                                          | 17             |
| 20                                          | 14             |
| 30                                          | 10             |

The higher density has a remarkable effect on mechanical properties of sintered samples. Figure 4 illustrates the variation of hardness vs. the amount of  $\mathrm{TiB}_2$  in the compositions. As can be seen, the highest hardness value obtained was about 31 GPa

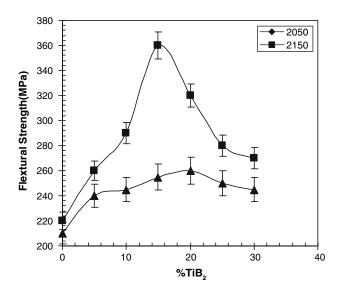



Fig. 5 Effect of  $TiB_2$  addition on fracture toughness of the samples sintered at 2150 °C ( $\blacksquare$ ) and 2050 °C ( $\triangle$ )

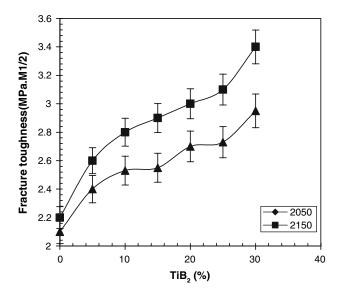



Fig. 6 Effect of TiB₂ addition on fracture toughness of the samples sintered at 2150 °C ( $\blacksquare$ ) and 2050 °C ( $\blacktriangle$ )

for the samples having 15%  $TiB_2$  in their composition. This value is very close to the hardness of fully densified pure  $B_4C$  materials. By increasing  $TiB_2$  from 15% to 30%, the hardness decreases. This is due to the fact that  $TiB_2$  is a less hard phase compared to  $B_4C$ .

In Fig. 5, the variation of bending strength as a function of TiB<sub>2</sub> percentage has been drawn. From the figure, the bending strength has improved remarkably as a result of TiB<sub>2</sub> addition. With respect to this figure, the bending strength increases from 220 MPa to a value of 345 MPa for samples with 15% TiB<sub>2</sub> and then decreases for samples having higher amount of TiB<sub>2</sub> in their composition. Contrary to the other mechanical properties, the fracture toughness increases for all the samples having up to 30% TiB<sub>2</sub> (Fig. 6). The reason for this behavior seems to be the crack interaction with tougher TiB<sub>2</sub> phase or crack deflection by microcracks around TiB<sub>2</sub>

phase. Due to thermal expansion mismatch between  $TiB_2$  and  $B_4C$ , microcracking or compression residual stress field exists around  $TiB_2$  phase.

# 4. Conclusion

- Addition of TiB<sub>2</sub> has a remarkable effect on grain growth, sinterability, and density improvement of B<sub>4</sub>C material.
- Bending strength and hardness follow the same behavior.
  These properties improve by addition of TiB<sub>2</sub> to certain amounts and then start to decrease.
- 3. The fracture toughness increases for all the  $B_4C\text{-Ti}B_2$  samples, having up to 30%  $TiB_2$ .
- Addition of TiB<sub>2</sub> alleviates B<sub>4</sub>C grain growth during sintering process.

# **Acknowledgment**

The authors would like to thank University of Malek Ashtar and University of Tehran for supporting the present project.

### References

- C.C. Philip, Ceramic Composites Containing Spinel Silicon carbide, and Boron Carbide, European Patent No. 921085924, 1999
- G. Magnani, G. Beltrani, and G. Loris, Pressureless Sintering and Properties of α SiC–B<sub>4</sub>C Composites, *J. Eur. Ceram. Soc.*, 2001, 21, p 633–638
- G.Q. Weaver, Sintered High Density Boron Carbide, US Patent No. 4320204, 1982
- L.S. Sigl, Processing and Mechanical Properties of Boron Carbide Sintered with TiC, J. Eur. Ceram. Soc., 1998, 18, p 1521–1529
- J.W. Henney and J.W.S. Jones, Novel Powder Processing of Sintered Boron Carbide, British Patent No. 2014193, 1979
- T. Vasilos and S.K. Dutta, Low Temperature Hot Pressing of Boron Carbide and its Properties, Am. Ceram. Soc. Bull., 1974, 53, p 435–438
- S. Dole and S. Prochazka, Densification and Microstructure Development in Boron Carbide, *Ceram. Eng. Sci. Proc.*, 1985, 6, p 1151
- H. Lee and R.F. Speyer, Pressureless Sintering of Boron Carbide, J. Am. Ceram. Soc., 2003, 86(9), p 1468–1473
- R.F. Speyer and H. Lee, Advances in Pressureless Densification of Boron Carbide, J. Mater. Sci., 2004, 39(19), p 6017–6021
- M. Bougoin and F. Thevenot, Pressureless Sintering of Boron-Carbide with an Addition of Polycarbosilane, *J. Mater. Sci.*, 1987, 22(1), p 109–114
- S.L. Dole, S. Prochazka, and R.H. Doremus, Microstructural Coarsening During Sintering of Boron-Carbide, *J. Am. Ceram. Soc.*, 1989, 72(6), p 958–966

- A. Goldstein, Y. Geffen, and A. Goldenberg, Boron Carbide-Zirconium Boride in situ Composites by the Reactive Pressureless Sintering of Boron Carbide-Zirconia Mixtures, *J. Am. Ceram. Soc.*, 2001, 84(3), p 642–644
- K.A. Schwetz, Mechanical Properties of Injection Moldod B<sub>4</sub>C-C Ceramics, J. Solid State Chem., 1997, 133, p 66–76
- D. Stibbs, C.G. Brown, and R. Thompson, Dense Sintered Boron Carbide Containing Beryllium Carbide, US Patent No. 3146571, 1973
- S. Prochazka, Sintering Boron Carbide Containing Beryllium Carbide, US Patent No. 4005235, 1997
- A.K. Kundsen and W. Rafaniello, Titanium Diboride/Boron Carbide Composites with High Hardness and Toughness, US Patent No. 4957884, 1990
- T. Graziani and A. Bellosi, Production and Characteristics of B<sub>4</sub>C/TiB<sub>2</sub> Composites, Key Eng. Mater., 1995, 104–107, p 125–132
- K.-F. Cai and C.-W. Nan, The Effect of Silicon Addition on Thermoelectric Properties of a B<sub>4</sub>C Ceramic, *Mater. Sci. Eng. B*, 1999, 67, p 102–107
- L. Levin, N. Frage, and M.P. Darriel, The Effect of Ti and TiO<sub>2</sub> Addition on the Pressureless Sintering of B<sub>4</sub>C, *Metall. Mater. Trans. A*, 1999, 30(12), p 3201–3210
- C.C. Wu and R.W. Rice, Porosity Dependence of Wear and Other Mechanical Properties on Fine-grain Alumina and Boron Carbide (B<sub>4</sub>C), Ceram. Eng. Sci. Proc., 1985, 6, p 977–994
- H.-W. Kim, Y.-H. Koh, and H.-E. Kim, Densification and Mechanical Properties of B<sub>4</sub>C with Al<sub>2</sub>O<sub>3</sub> as a Sintering Aids,, *J. Am. Ceram. Soc.*, 2000, 83(11), p 2863–2865
- V.V. Shorokhod, M.D. Vlajic, and V.D. Kristic, Pressureless Sintering of B<sub>4</sub>C-TiB<sub>2</sub> Ceramic Composites, *Mater. Sci. Forum*, 1998, 282-283, p 219-224
- V.V. Skorokhod, Processing, Microstructure, and Mechanical Properties of B<sub>4</sub>C-TiB<sub>2</sub> Particulate Sintered Composites I: Pressureless Sintering and Microstructure Evolution, *Powder Metall. Metal Ceram.*, 2000, 39(9–10), p 504–513
- S. Yamada, K. Hirao, and S. Sakaguehi, Microstructure and Mechanical Properties of B<sub>4</sub>C-CrB<sub>2</sub> Ceramics, Key Eng. Mater., 2002, 206–213, p 811–814
- K.F. Cai, C.W. Nan, M. Schmuecker, and E. Mueller, Microstructure of Hot-pressed B<sub>4</sub>C–TiB<sub>2</sub> Thermoelectric Composites, *J. Alloys. Compd.*, 2003, 350(1–2), p 313–318
- A. Li, Y. Zhen, Q. Yin, M. Laipeng, and Y. Yansheng, Microstructure and Properties of (SiC, TiB<sub>2</sub>)/B<sub>4</sub>C Composites by Reaction Hot Pressing, Ceram. Int., 2006, 32(8), p 849–856
- T.S. Srivatsan, G. Guruprasad, D. Black, M. Petraroli, R. Adhakrishnan, and T.S. Sudarshan, Microstructural Development and Hardness of TiB<sub>2</sub>–B<sub>4</sub>C Composite Samples: Influence of Consolidation Temperature, *J. Alloys Compd.*, 2006, 413(1–2), p 63–72
- M. Kakazey, M. Vlasova, J.G. Gonzalez-Rodriguez, M. Dominguez-Patino, and R. Leder, X-ray and EPR Study of Reactions between B<sub>4</sub>C and TiO<sub>2</sub>, *Mater. Sci. Eng. A*, 2006, 418, p 111–114
- T.S. Srivatsan, G. Guruprasad, D. Black, R. Radhakrishnan, and T.S. Sudarshan, Influence of TiB<sub>2</sub> Content on Microstructure and Hardness of TiB<sub>2</sub>–B<sub>4</sub>C Composite, *Powder Technol.*, 2005, 159(3), p 161–167
- Z. Yuhu, L. Aijua, Y. Yansheng, S. Ruixi, and L. Yingcai, Reactive and Dense Sintering of Reinforced-toughened B<sub>4</sub>C Matrix Composites, *Mater. Res. Bull.*, 2004, 39(11), p 1615–1625